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Due to the inadequate automation in the amplification and sequencing procedures, the use of 16S rRNA gene
sequence-based methods in clinical microbiology laboratories is largely limited to identification of strains that
are difficult to identify by phenotypic methods. In this study, using conventional full-sequence 16S rRNA gene
sequencing as the “gold standard,” we evaluated the usefulness of the MicroSeq 500 16S ribosomal DNA
(rDNA)-based bacterial identification system, which involves amplification and sequencing of the first 527-bp
fragment of the 16S rRNA genes of bacterial strains and analysis of the sequences using the database of the
system, for identification of clinically significant bacterial isolates with ambiguous biochemical profiles. Among
37 clinically significant bacterial strains that showed ambiguous biochemical profiles, representing 37 non-
duplicating aerobic gram-positive and gram-negative, anaerobic, and Mycobacterium species, the MicroSeq 500
16S rDNA-based bacterial identification system was successful in identifying 30 (81.1%) of them. Five (13.5%)
isolates were misidentified at the genus level (Granulicatella adiacens was misidentified as Abiotrophia defectiva,
Helcococcus kunzii was misidentified as Clostridium hastiforme, Olsenella uli was misidentified as Atopobium
rimae, Leptotrichia buccalis was misidentified as Fusobacterium mortiferum, and Bergeyella zoohelcum was misi-
dentified as Rimerella anatipestifer), and two (5.4%) were misidentified at the species level (Actinomyces odon-
tolyticus was misidentified as Actinomyces meyeri and Arcobacter cryaerophilus was misidentified as Arcobacter
butzleri). When the same 527-bp DNA sequences of these seven isolates were compared to the known 16S rRNA
gene sequences in the GenBank, five yielded the correct identity, with good discrimination between the best and
second best match sequences, meaning that the reason for misidentification in these five isolates was due to a
lack of the 16S rRNA gene sequences of these bacteria in the database of the MicroSeq 500 16S rDNA-based
bacterial identification system. In conclusion, the MicroSeq 500 16S rDNA-based bacterial identification
system is useful for identification of most clinically important bacterial strains with ambiguous biochemical
profiles, but the database of the MicroSeq 500 16S rDNA-based bacterial identification system has to be
expanded in order to encompass the rarely encountered bacterial species and achieve better accuracy in
bacterial identification.

Identification of bacteria in clinical microbiology laborato-
ries is traditionally performed by isolation of the organisms
and study of their phenotypic characteristics, including Gram
staining, morphology, culture requirements, and biochemical
reactions. However, these methods of bacterial identification
have major drawbacks. First, they cannot be used for noncul-
tivable organisms. Second, we are occasionally faced with or-
ganisms exhibiting biochemical characteristics that do not fit
into patterns of any known genus and species. Third, identifi-
cation of slow-growing organisms would be extremely slow and
difficult.

Since the discovery of PCR and DNA sequencing, compar-
ison of the gene sequences of bacterial species showed that the
16S rRNA gene is highly conserved within a species and among
species of the same genus, and hence can be used as the new
“gold standard” for identification of bacteria to the species
level. Using this new standard, phylogenetic trees, based on

base differences between species, are constructed, and bacteria
are classified and reclassified into new genera (8). Recently we
have reported the use of this technique for the identification to
species level of bacterial strains that have posed problems of
identification in our clinical microbiology laboratory, as well as
the clinical impact of accurate identification of such isolates (1,
3, 4, 5, 6, 13, 15, 16, 17, 18, 19, 20, 22, 23, 24, 25–29, 31; P. C. Y.
Woo, J. H. C. Li, W. M. Tang, and K. Y. Yuen, Letter, N. Engl.
J. Med. 345:842-843, 2001).

The MicroSeq 500 16S ribosomal DNA (rDNA)-based bac-
terial identification system (Perkin-Elmer Applied Biosystems
Division, Foster City, Calif.) has been designed for rapid and
accurate identification of bacterial pathogens. In this system,
the first 527-bp fragment of the 16S rRNA gene of the bacterial
strain is amplified, sequenced, and analyzed using the database
of the system. It has been shown that the system is useful for
the identification of aerobic pathogenic gram-negative bacilli,
Mycobacterium species, and coryneform bacteria (9, 11, 12).
However, due to the inadequate automation in the amplifica-
tion and sequencing procedures, it is still very labor-intensive
and not cost-effective to use this system for routine identifica-
tion of all bacterial isolates in clinical microbiology laborato-
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ries. At the moment, the use of this system or other 16S rRNA
gene sequence-based identification methods for bacterial iden-
tification in clinical microbiology laboratories is largely limited
to the identification of strains that are difficult to identify by
phenotypic methods. In this study, using DNA sequencing of
the complete 16S rRNA gene as the gold standard, we evalu-
ated the usefulness of this system in the identification of 37
clinically significant bacterial strains that showed ambiguous
biochemical profiles. These strains represented 37 nondupli-
cating aerobic gram-positive and gram-negative, anaerobic,
and Mycobacterium species. The potential for 16S rRNA gene
sequencing for general use in clinical microbiology laboratories
is also discussed.

MATERIALS AND METHODS

Bacterial strains. The bacterial strains used in this study were isolated from
patient specimens and obtained from the Clinical Microbiology Laboratory of
Queen Mary Hospital in Hong Kong (1995 to 2001). Based on the Gram smear
appearances, growth requirements, colonial morphologies, and the results of
other simple phenotypic tests, such as motility, catalase, and cytochrome oxidase,
appropriate strips or cards of the API system (bioMerieux Vitek, Hazelwood,
Mo.) and Vitek system (bioMerieux Vitek) and/or additional conventional bio-
chemical methods were used for identification of the bacterial strains (7). An
ambiguous biochemical profile is defined as disagreement between the results

provided by the API and Vitek systems or a biochemical profile that did not fit
the typical profiles of known bacterial species (7). All bacterial strains that were
clinically significant but showed ambiguous biochemical profiles were subject to
conventional 16S rRNA gene sequencing. After excluding novel bacterial spe-
cies, 37 strains, representing 37 nonduplicating aerobic gram-positive and gram-
negative, anaerobic, and Mycobacterium species, were selected for DNA se-
quencing of the first 527-bp fragment of the 16S rRNA gene and analysis by the
MicroSeq 16S rDNA-based bacterial identification system. Among the 37 strains,
24 (64.9%) were isolated from blood, four (10.8%) were isolated from stool,
three (8.1%) were isolated from pus, two (5.4%) were isolated from biopsy
specimens, one (2.7%) was isolated from bile, one (2.7%) was isolated from
bronchoalveolar lavage, one (2.7%) was isolated from an intrauterine contra-
ceptive device, and one (2.7%) was isolated from a cochlear implant.

Extraction of bacterial DNA. Bacterial DNA extraction was modified from our
previous published protocol (21). Briefly, 80 �l of NaOH (0.05 M) was added to
20 �l of bacterial cells suspended in distilled water, and the mixture was incu-
bated at 60°C for 45 min, followed by addition of 6 �l of Tris-HCl (pH 7.0),
achieving a final pH of 8.0. The resultant mixture was diluted 100-fold, and 5 �l
of the diluted extract was used for PCR.

PCR, gel electrophoresis, and conventional 16S rRNA gene sequencing. PCR
amplification and DNA sequencing of the full 16S rRNA genes were performed
according to our previous publications (1, 3, 4, 5, 6, 13, 15, 16, 17, 18, 19, 20, 22,
23, 24, 25–29, 31; Woo et al., letter). Briefly, DNase I-treated distilled water and
PCR master mix (which contains deoxynucleoside triphosphates [NTPs], PCR
buffer, and Taq polymerase) were used in all PCRs by adding 1 U of DNase I
(Pharmacia, Sweden) to 40 �l of distilled water or PCR master mix, incubating
the mixture at 25°C for 15 min, and subsequently at 95°C for 10 min to inactivate

TABLE 1. PCR primers used for conventional 16S rRNA gene sequencing

Strain no.
Primer

Forward Backward

1 LPW55 5�-AGTTTGATCCTGGCTCAG-3� LPW58 5�-AGGCCCGGGAACGTATTCAC-3�
2 LPW55 5�-AGTTTGATCCTGGCTCAG-3� LPW58 5�-AGGCCCGGGAACGTATTCAC-3�
3 LPW81 5�-TGGCGAACGGGTGAGTAA-3� LPW58 5�-AGGCCCGGGAACGTATTCAC-3�
4 LPW200 5�-GAGTTGCGAACGGGTGAG-3� LPW205 5�-CTTGTTACGACTTCACCC-3�
5 LPW200 5�-GAGTTGCGAACGGGTGAG-3� LPW205 5�-CTTGTTACGACTTCACCC-3�
6 LPW200 5�-GAGTTGCGAACGGGTGAG-3� LPW205 5�-CTTGTTACGACTTCACCC-3�
7 LPW200 5�-GAGTTGCGAACGGGTGAG-3� LPW205 5�-CTTGTTACGACTTCACCC-3�
8 LPW200 5�-GAGTTGCGAACGGGTGAG-3� LPW205 5�-CTTGTTACGACTTCACCC-3�
9 LPW200 5�-GAGTTGCGAACGGGTGAG-3� LPW205 5�-CTTGTTACGACTTCACCC-3�
10 LPW200 5�-GAGTTGCGAACGGGTGAG-3� LPW205 5�-CTTGTTACGACTTCACCC-3�
11 LPW200 5�-GAGTTGCGAACGGGTGAG-3� LPW205 5�-CTTGTTACGACTTCACCC-3�
12 LPW200 5�-GAGTTGCGAACGGGTGAG-3� LPW205 5�-CTTGTTACGACTTCACCC-3�
13 LPW398 5�-GGCGTGCTTACCACATG-3� LPW58 5�-AGGCCCGGGAACGTATTCAC-3�
14 LPW398 5�-GGCGTGCTTACCACATG-3� LPW58 5�-AGGCCCGGGAACGTATTCAC-3�
15 LPW55 5�-AGTTTGATCCTGGCTCAG-3� LPW58 5�-AGGCCCGGGAACGTATTCAC-3�
16 LPW55 5�-AGTTTGATCCTGGCTCAG-3� LPW325 5�-CGGATACCTTGTTACGACT-3�
17 LPW55 5�-AGTTTGATCCTGGCTCAG-3� LPW282 5�-GCTTCGGGTGTYRCCAACTTTC-3�
18 LPW55 5�-AGTTTGATCCTGGCTCAG-3� LPW205 5�-CTTGTTACGACTTCACCC-3�
19 LPW55 5�-AGTTTGATCCTGGCTCAG-3� LPW325 5�-CGGATACCTTGTTACGACT-3�
20 LPW55 5�-AGTTTGATCCTGGCTCAG-3� LPW325 5�-CGGATACCTTGTTACGACT-3�
21 LPW55 5�-AGTTTGATCCTGGCTCAG-3� LPW325 5�-CGGATACCTTGTTACGACT-3�
22 LPW55 5�-AGTTTGATCCTGGCTCAG-3� LPW325 5�-CGGATACCTTGTTACGACT-3�
23 LPW81 5�-TGGCGAACGGGTGAGTAA-3� LPW324 5�-TTGTTACGACTTCACCCCA-3�
24 LPW55 5�-AGTTTGATCCTGGCTCAG-3� LPW58 5�-AGGCCCGGGAACGTATTCAC-3�
25 LPW55 5�-AGTTTGATCCTGGCTCAG-3� LPW58 5�-AGGCCCGGGAACGTATTCAC-3�
26 LPW55 5�-AGTTTGATCCTGGCTCAG-3� LPW58 5�-AGGCCCGGGAACGTATTCAC-3�
27 LPW81 5�-TGGCGAACGGGTGAGTAA-3� LPW307 5�-TAGCGATTCCGACTTCAT-3�
28 LPW55 5�-AGTTTGATCCTGGCTCAG-3� LPW58 5�-AGGCCCGGGAACGTATTCAC-3�
29 LPW55 5�-AGTTTGATCCTGGCTCAG-3� LPW182 5�-AGTCGCTGATTCCACTGTGG-3�
30 LPW55 5�-AGTTTGATCCTGGCTCAG-3� LPW182 5�-AGTCGCTGATTCCACTGTGG-3�
31 LPW55 5�-AGTTTGATCCTGGCTCAG-3� LPW182 5�-AGTCGCTGATTCCACTGTGG-3�
32 LPW55 5�-AGTTTGATCCTGGCTCAG-3� LPW58 5�-AGGCCCGGGAACGTATTCAC-3�
33 LPW55 5�-AGTTTGATCCTGGCTCAG-3� LPW58 5�-AGGCCCGGGAACGTATTCAC-3�
34 LPW81 5�-TGGCGAACGGGTGAGTAA-3� LPW58 5�-AGGCCCGGGAACGTATTCAC-3�
35 LPW81 5�-TGGCGAACGGGTGAGTAA-3� LPW58 5�-AGGCCCGGGAACGTATTCAC-3�
36 LPW81 5�-TGGCGAACGGGTGAGTAA-3� LPW58 5�-AGGCCCGGGAACGTATTCAC-3�
37 LPW81 5�-TGGCGAACGGGTGAGTAA-3� LPW58 5�-AGGCCCGGGAACGTATTCAC-3�
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the DNase I. The bacterial DNA extracts and control were amplified with 0.5 �M
primers (Table 1) (Gibco BRL, Rockville, Md.). The PCR mixture (50 �l)
contained bacterial DNA, PCR buffer (10 mM Tris-HCl [pH 8.3], 50 mM KCl,
2 mM MgCl2, 0.01% gelatin), a 200 �M concentration of each dNTP, and 1.0 U
of Taq polymerase (Boehringer, Mannheim, Germany). The mixtures were am-
plified in 40 cycles of 94°C for 1 min, 55°C for 1 min, and 72°C for 2 min, with
a final extension at 72°C for 10 min, in an automated thermal cycler (Perkin-
Elmer Cetus, Gouda, The Netherlands). DNase I-treated distilled water was
used as the negative control. 10 �l of each amplified product was electrophoresed
in 1.0% (wt/vol) agarose gel, with a molecular size marker (Lambda DNA AvaII
digest; Boehringer) in parallel. Electrophoresis in Tris-borate-EDTA buffer was
performed at 100 V for 1.5 h. The gel was stained with ethidium bromide (0.5 �g/ml)
for 15 min, rinsed, and photographed under UV light illumination.

The PCR products were gel purified using the QIAquick PCR purification kit
(QIAgen, Hilden, Germany). Both strands of the PCR products were sequenced
twice with an ABI 377 automated sequencer according to manufacturers’ in-
structions (Perkin-Elmer Applied Biosystems Division), using the PCR primers
and additional primers designed from the first round of sequencing results. The
sequences of the PCR products were compared with known 16S rRNA gene
sequences in the GenBank by multiple sequence alignment using the CLUSTAL
W program (14).

PCR amplification and DNA sequencing of the first 527-bp fragment of the
16S rRNA gene and analysis by the MicroSeq 500 16S rDNA-based bacterial
identification system. Bacterial DNA extracts were amplified with 0.5 �M prim-
ers (005F and 531R). The PCR mixture (50 �l) contained bacterial DNA, PCR
buffer (10 mM Tris-HCl [pH 8.3], 50 mM KCl, 3 mM MgCl2, 0.01% gelatin), a
200 �M concentration of each dNTP, and 1.0 U of Taq polymerase (Boehringer
Mannheim, Germany). The mixtures were amplified in 30 cycles of 95°C for 30 s,
60°C for 30 s, and 72°C for 45 s, with a final extension at 72°C for 10 min, in an
automated thermal cycler (Perkin-Elmer Cetus). The amplified products were
purified and sequenced as described above. The DNA sequences were analyzed
using the database provided by the MicroSeq 500 16S rDNA-based bacterial
identification system.

RESULTS

Conventional 16S rRNA gene sequencing. PCR of the 16S
rRNA genes of the 37 isolates with ambiguous biochemical
profiles showed bands at about 1,400 to 1,500 bp. For all 37
isolates, there was �1% difference between the 16S rRNA
gene sequences of the isolates and the most closely matched
sequence in the GenBank.

DNA sequencing of the first 527-bp fragment of the 16S
rRNA gene and analysis by the MicroSeq 500 16S rDNA-based
bacterial identification system. PCR amplification of the first
527-bp fragments of the 16S rRNA genes of the 37 isolates
showed bands at about 500 bp. Analysis of the 37 sequences
using the MicroSeq 500 16S rDNA-based bacterial identifica-
tion database showed that the identities of 30 (81.1%) strains
were the same as those obtained by conventional 16S rRNA
gene sequencing (Table 2). For the remaining seven (18.9%)
sequences, five (13.5%) isolates were misidentified at the
genus level (case 8, Granulicatella adiacens misidentified as
Abiotrophia defectiva; case 12, Helcococcus kunzii misidentified
as Clostridium hastiforme; case 19, Olsenella uli misidentified as
Atopobium rimae; case 22, Leptotrichia buccalis misidentified as
Fusobacterium mortiferum; and case 27, Bergeyella zoohelcum
misidentified as Rimerella anatipestifer), whereas two (5.4%)
were misidentified at the species level (case 17, Actinomyces
odontolyticus misidentified as Actinomyces meyeri; case 32,
Arcobacter cryaerophilus misidentified as Arcobacter butzleri).

Identification by commercially available bacterial identifi-
cation systems. Phenotypic identification using API and Vitek
systems were performed in 28 of the 37 isolates. Using full 16S
rRNA gene sequencing as the gold standard, the API system
correctly identified seven (25%) of the 28 isolates at �70%24
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confidence, whereas the Vitek system only correctly identified
one (3.6%) of the 28 isolates at �70% confidence (Table 2).

DISCUSSION

In this study, we showed that the MicroSeq 500 16S rDNA-
based bacterial identification system is useful for identification
of most clinically important bacterial strains with ambiguous
biochemical profiles, and hence would be a useful substitution
for conventional full-sequence 16S rRNA gene sequencing in
identification of bacterial strains that pose problems in clinical
microbiology laboratories. Using conventional 16S rRNA gene
sequencing as the gold standard, the MicroSeq 500 16S rRNA
bacterial identification system is able to identify 32 (86.5%) of
the 37 (including 15 aerobic or facultative anaerobic gram-
positive; 11 aerobic, microaerophilic, facultative anaerobic gram-
negative; seven anaerobic; three mycobacterial; and one Myco-
plasma) isolates with ambiguous biochemical profiles to the
genus level, and is able to identify 30 (81.1%) of these 37
isolates to the species level.

The most important reason for failure of the MicroSeq 500
16S rDNA-based bacterial identification system in identifying a
bacterium is a lack of the 16S rRNA gene sequence of the
particular bacterium in the database. PCR amplification of all
37 isolates using 005F and 531R as PCR primers were success-
ful, yielding specific bands at about 500 bp. Furthermore, DNA
sequencing of the corresponding PCR products using the same
oligonucleotides as sequencing primers posed no problems.
When the sequences of the 527 bp were aligned to the database
of the MicroSeq 500 16S rDNA-based bacterial identification
system, seven (18.9%) of the isolates did not yield the correct
identity. The 16S rRNA gene sequences of all the seven iso-
lates were not included in the MicroSeq 500 16S rDNA-based
bacterial identification system database, probably because they
were expected to be rarely encountered. On the other hand,
when the same 527-bp DNA sequences of these seven isolates
were compared to the known 16S rRNA gene sequences in the
GenBank, five yielded the correct identity, with good discrim-
ination between the best and second best match sequences For
the remaining two strains, only full 16S rRNA gene sequencing
correctly identified them with good discrimination, indicating
that the first 527-bp fragments of the 16S rRNA genes of these
species were not discriminative enough. This discrepancy be-

tween using the GenBank database and the MicroSeq 500 16S
rDNA-based bacterial identification system database suggests
that the database of the latter has to be expanded in order
to encompass the rarely encountered bacterial species and
achieve better accuracy in identification of bacteria with am-
biguous biochemical profiles. If this limitation of the MicroSeq
500 16S rDNA-based bacterial identification system database
is overcome, it would be a better choice than full 16S rRNA
gene sequencing in clinical microbiology laboratories, as it
involves amplification and sequencing of only about 500 bp.
Therefore it would be less time consuming and expensive than
full 16S rRNA gene sequencing.

16S rRNA gene sequencing will continue to be the working
gold standard for the identification of most bacteria, and better
automation of such a technique may put it into routine use in
large clinical microbiology laboratories, especially those serv-
ing tertiary centers, replacing the traditional phenotypic tests.
Compared to phenotypic tests, 16S rRNA gene sequence-
based identification schemes are superior in the identification
of strains considered unidentifiable due to atypical biochemical
profiles, slow-growing bacteria, rarely encountered bacterial
species, and noncultivable strains. Furthermore, such a tech-
nique will be applicable to not only pyogenic bacteria but also
other organisms such as mycobacteria (24, 27; Woo et al.,
letter), of which the identification is not routinely performed in
most clinical microbiology laboratories because special exper-
tise and equipment such as gas liquid chromatography are
required. Modern technologies have made it possible to con-
struct a high density of oligonucleotide arrays on a chip with
oligonucleotides representing the 16S rRNA gene sequence of
various bacteria. Such a design will facilitate automation of the
annealing and detection of the PCR products of 16S rRNA
gene amplification and avoid the step of sequencing the am-
plified PCR products. Hence, the turnaround time can be even
shorter. Since amplification of the 16S rRNA gene takes only
4 to 6 h, and the annealing and detection of PCR product takes
only another few hours, theoretically the identification can be
completed within 1 day. However, at the moment, due to the
inadequate automation of the DNA amplification and se-
quencing steps, it would not be cost-effective to use the Micro-
Seq 500 16S rDNA-based bacterial identification system for
identification of all bacterial isolates in clinical microbiology

TABLE 3. Analysis of DNA sequences of strains identified incorrectly using database of Microseq 500
16S rDNA bacterial identification system

Strain
no.

Identification by
conventional 16S rRNA

gene sequencing

Identification by DNA sequencing of first 527-bp fragment of 16S rRNA gene

Analysis by using data-
base of MicroSeq 500
16S rDNA bacterial
identification system

Analysis by using database of GenBank

Best match

No. of base
differences (%)
between strain
and best match

Second best match

No. of base
differences (%)
between strain

and second
best match

8 Granulicatella adiacens Abiotrophia defectiva Granulicatella adiacens 0 (0) Abiotrophia paraadiacens 1 (0.2)
12 Helcococcus kunzii Clostridium hastiforme Helcococcus kunzii 10 (1.9) Sedimentibacter hydroxybenzoicus 91 (17.3)
17 Actinomyces odontolyticus Actinomyces meyeri Actinomyces odontolyticus 0 (0) Actinomyces meyeri 4 (0.8)
19 Olsenella uli Atopobium rimae Olsenella uli 0 (0) Olsenella profusa 21 (4.0)
22 Leptotrichia buccalis Fusobacterium mortiferum Leptotrichia buccalis 2 (0.4) Streptobacillus moniliformis 73 (13.6)
27 Bergeyella zoohelcum Riemerella anatipestifer Bergeyella zoohelcum 2 (0.4) Riemerella anatipestifer 22 (4.2)
32 Arcobacter cryaerophilus Arcobacter butzleri Arcobacter cryaerophilus 0 (0) Arcobacter butzleri 12 (2.3)
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laboratories. On the contrary, the use of this system for iden-
tification of clinically important bacteria with ambiguous bio-
chemical profiles would be more cost-effective and the accu-
racy can be easily improved with expansion and regular
updating of the database.

Despite the usefulness of 16S rRNA gene sequence-based
identification in most circumstances, there are still problems in
some situations that remain to be solved. These include sharing
of similar 16S rRNA gene sequences among different bacterial
species and too much variation of the 16S rRNA gene se-
quences among different strains within the same species. When
two or more bacterial species such as Streptococcus pneumo-
niae, Streptococcus oralis, and Streptococcus mitis; Burkholderia
pseudomallei and Burkholderia thailandensis; and some rapidly
growing Mycobacterium species share similar 16S rRNA gene
sequences, 16S rRNA gene sequence-based identification sys-
tems would be unable to differentiate the species. Additional
sequencing systems based on other conserved gene sequences,
such as groEL gene sequencing, has to be employed for the
differentiation of these species (2, 10, 30). As for the problem
of too much variation of the 16S rRNA gene sequences among
different strains within the same species, such as in Entero-
bacter, Pantoea, and Leclercia, reclassification of these groups
of bacteria may be necessary to achieve better identification
using gene sequence-based bacterial identification systems.
However, despite the impossibility to accurately assign a par-
ticular clinical isolate to a specific species, assigning the clinical
isolate to a certain group can successfully assist the clinical
management of the corresponding patient (23).
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